Advertisement

**Yes, number 69 is a composite number.**- Sixty-nine is a composite number, because it has more divisors than 1 and itself.

- No the number 69 is not a prime number.

- The prime factors of number 69 are: 3, 23
- Equcation for number sixty-nine factorization is: 3 * 23

- So, if n > 0 is an integer and there are integers 1 < a, b < n such that n = a * b, then n is composite. By definition, every integer greater than one is either a prime number or a composite number. The number one is a unit, it is neither prime nor composite. For example, the integer 14 is a composite number because it can be factored as 2 * 7. Likewise, the integers 2 and 3 are not composite numbers because each of them can only be divided by one and itself.
- Every composite number can be written as the product of two or more (not necessarily distinct) primes, for example, the composite number 299 can be written as 13 * 23, and that the composite number 360 can be written as 23 * 32 * 5; furthermore, this representation is unique up to the order of the factors. This is called the fundamental theorem of arithmetic.

- Is 69 A Prime Number?
- Prime Factorization Of 69
- Prime Factors Of 69
- Is 69 An Even Number?
- Is 69 An Odd Number?
- Square Root Of 69?

**About Number 6.**Six is the smallest composite number with two distinct prime factors, and the third triangular number. It is the smallest perfect number: 6 = 1 + 2 + 3 and the faculty of 3 is 6 = 3! = 1 * 2 * 3, which is remarkable, because there is no other three numbers whose product is equal to their sum. Similarly 6 = sqrt(1 ^ 3 + 2 + 3 ^ 3 ^ 3). The equation x ^ 3 + Y ^ 3 ^ 3 + z = 6xyz is the only solution (without permutations) x = 1, y = 2 and z = 3. Finally 1/1 = 1/2 + 1/3 + 1/6. The cube (from the Greek) or hexahedron (from Latin) cube is one of the five Platonic solids and has six equal areas. A tetrahedron has six edges and six vertices an octahedron. With regular hexagons can fill a plane without gaps. Number six is a two-dimensional kiss number.**About Number 9.**Nine is the smallest odd composite number and the minimum composite odd number that is no Fermat pseudoprime. It is the smallest natural number n, for each non-negative integer can be represented as a sum of at most n positive cubes (see Waring's problem), and the smallest positive integer n for which n squares in pairs of different positive edge length exist, the can be put together to form a rectangle. Number Nine is the number which (other than 0) as a single digit checksum generally occurs (in decimal number system) after multiplication by an arbitrary integer always even, and the number which is added to any other (except 0 and -9), as a single digit checksum the same result as the starting number itself - ie it behaves quasi-neutral.

A composite number is a positive integer that has at least one positive divisor other than one or the number itself. In other words, a composite number is any integer greater than one that is not a prime number.

A composite number (or simply a composite) is a natural number, that can be found by multiplying prime numbers. For example, the number 9 can be found by multiplying 3 by 3, and the number 12. You get it by multiplying 3, 2 and 2. All natural numbers (greater than 1) can be put in one of the two classes. Either the number is prime. Or the number is not prime. It can be found by multiplying together other primes. The same prime number can be used several times, as in the example with 12 above. This is known as the fundamental theorem of arithmetic.

A composite number (or simply a composite) is a natural number, that can be found by multiplying prime numbers. For example, the number 9 can be found by multiplying 3 by 3, and the number 12. You get it by multiplying 3, 2 and 2. All natural numbers (greater than 1) can be put in one of the two classes. Either the number is prime. Or the number is not prime. It can be found by multiplying together other primes. The same prime number can be used several times, as in the example with 12 above. This is known as the fundamental theorem of arithmetic.